Simplify each exponent expression

1.
$$x^2 \cdot x^7$$
 2. $8x^5 \cdot 4x^3$

3.
$$\frac{x^7}{x^5}$$
 4. $(x^6)^3$

$$5. \quad \frac{1}{x^{-8}}$$

- 6. Re-write each radical expression in exponential form:
 - a. $\sqrt{4^3}$ = _____ b. $\sqrt[5]{6}$ = _____

Solve each equation. Show all work.

7. $(3^{x})(3^{5}) = 3^{8}$ 8. $(4^{2x-3})(4^{x-1}) = 4^{11}$

9.
$$3^{x+4} = 81^{x-1}$$
 10. $\left(\frac{1}{8}\right)^{x+4} = 2^{2x+3}$

Name: _____

11. Given the function: $f(x) = 8\left(\frac{1}{4}\right)^x$

- a. Find the y-intercept: _____ b. Is the function increasing or decreasing? _____
- 12. Given the function: $f(x) = 4(2)^x$
 - a. Find the domain: _____
- b. Find the range: _____

Sketch a graph of each function showing the y-intercept, one other point, and any asymptotes:

Find an exponential function for the function shown: 15.

X	0	1	2	3
у	36	12	4	$\frac{4}{3}$

$$f(x) =$$

f(x) =_____

- 17. Set up an exponential equation in the form $y = a(b)^x$ for each situation:
 - a. Initial value = 700 with a growth rate of 14%
 - b. Initial value = 3000 with a decay rate of 7%
- 18. A house valued at \$240,000 decreases in value by 8% each year.
 - a. Set up an equation for the value of the house after x years.
 - b. Find the value of the house after 6 years

- 19. You deposit \$3000 in a savings account that earns 12% interest, compounded quarterly.a. Set up an equation for the amount in the account after x years.
 - b. Find the amount of money in the account after 8 years.

- 20. Determine if each sequence is arithmetic, geometric, or neither:
 - a. 8, 24, 72, 216 . . .
 - b. 2, 8, 16, 26 . . .
 - c. -16, -8, 0, 8

21. Given the geometric sequence: $\frac{3}{8}, \frac{3}{4}, \frac{3}{2}, 3, \ldots$

- a. Find an explicit formula for the sequence
- b. Use the formula to find a_9

Find an explicit and recursive formula for each geometric sequence:

22.	5, 15, 45, 135,		23. 600, 120, 24, $\frac{24}{5}$,		
	Explicit:	<i>a</i> _{<i>n</i>} =	Explicit:	<i>a</i> _{<i>n</i>} =	
	Recursive:	<i>a</i> ₁ =	Recursive:	<i>a</i> ₁ =	
		<i>a</i> _{<i>n</i>} =		<i>a</i> _{<i>n</i>} =	

24. Given a geometric sequence with the

Explicit formula $a_n = (4) \left(\frac{1}{2}\right)^{n-1}$

Find the recursive formula:

Recursive: $a_1 =$ _____

 $a_n =$ _____

25. Given an arithmetic sequence with the

recursive formula $a_1 = 8$ and $a_n = a_{n-1} \cdot 6$

Find the explicit formula:

Explicit: *a*_{*n*} = _____